Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Res ; 201: 107337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461594

RESUMO

Post traumatic epilepsy (PTE) is a treatment-resistant consequence of traumatic brain injury (TBI). Recently, it has been revealed that epileptiform activity in acute chemoconvulsant seizure models is accompanied by transient shrinkages of extracellular space (ECS) called rapid volume pulsations (RVPs). Shrinkage of the ECS surrounding neurons and glia may contribute to ictogenic hyperexcitability and hypersynchrony during the chronic phase of TBI. Here, we identify the phenomenon of RVPs occurring spontaneously in rat neocortex at ≥ 3 weeks after injury in the controlled cortical impact (CCI) model for PTE. We further report that blocking the electrogenic action of the astrocytic cotransporter NBCe1 with 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminates both RVPs and epileptiform activity in ex-vivo CCI neocortical brain slices. We conclude that NBCe1-mediated extracellular volume shrinkage may represent a new target for therapeutic intervention in PTE.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Neocórtex , Ratos , Animais , Simportadores de Sódio-Bicarbonato/metabolismo , Espaço Extracelular/metabolismo , Neocórtex/metabolismo
2.
J Physiol ; 599(12): 3195-3220, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33942325

RESUMO

KEY POINTS: Extracellular space (ECS) rapid volume pulsation (RVP) accompanying epileptiform activity is described for the first time. Such RVP occurs robustly in several in vitro and in vivo mouse models of epileptiform activity. In the in vitro 4-aminopyridine model of epileptiform activity, RVP depends on the activity of the electrogenic Na+ /HCO3- cotransporter (NBCe1). NBCe1 pharmacological inhibition suppresses RVP and epileptiform activity. Inhibition of changes in ECS volume may be a useful target in epilepsy patients who are resistant to current treatments. ​ ABSTRACT: The extracellular space (ECS) of the brain shrinks persistently by approximately 35% during epileptic seizures. Here we report the discovery of rapid volume pulsation (RVP), further transient drops in ECS volume which accompany events of epileptiform activity. These transient ECS contractions were observed in multiple mouse models of epileptiform activity both in vivo (bicuculline methiodide model) and in vitro (hyaluronan synthase 3 knock-out, picrotoxin, bicuculline and 4-aminopyridine models). By using the probe transients quantification (PTQ) method we show that individual pulses of RVP shrank the ECS by almost 15% in vivo. In the 4-aminopyridine in vitro model, the individual pulses of RVP shrank the ECS by more than 4%, and these transient changes were superimposed on a persistent ECS shrinkage of 36% measured with the real-time iontophoretic method. In this in vitro model, we investigated several channels and transporters that may be required for the generation of RVP and epileptiform activity. Pharmacological blockages of Na+ /K+ /2Cl- cotransporter type 1 (NKCC1), K+ /Cl- cotransporter (KCC2), the water channel aquaporin-4 (AQP4) and inwardly rectifying potassium channel 4.1 (Kir4.1) were ineffective in halting the RVP and the epileptiform activity. In contrast, pharmacological blockade of the electrogenic Na+ /HCO3- cotransporter (NBCe1) by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminated both the RVP and the persistent ECS shrinkage. Importantly, this blocker also stopped the epileptiform activity. These results demonstrate that RVP is closely associated with epileptiform activity across several models of epileptiform activity and therefore the underlying mechanism could potentially represent a novel target for epilepsy management and treatment.


Assuntos
Epilepsia , Espaço Extracelular , 4-Aminopiridina/farmacologia , Animais , Encéfalo/metabolismo , Epilepsia/tratamento farmacológico , Espaço Extracelular/metabolismo , Humanos , Camundongos , Simportadores de Sódio-Bicarbonato/metabolismo
3.
Hum Immunol ; 82(4): 255-263, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33640208

RESUMO

Early in the SARS-CoV-2 pandemic, convalescent plasma (CP) therapy was proposed as a treatment for severely ill patients. We conducted a CP treatment protocol under the Mayo Clinic Extended Access Program at University Hospital Brooklyn (UHB). Potential donors were screened with a lateral flow assay (LFA) for IgM and IgG antibodies against the SARS-CoV-2 S1 receptor-binding domain (RBD). Volunteers that were LFA positive were tested with an ELISA to measure IgG titers against the RBD. Subjects with titers of at least 1:1024 were selected to donate. Most donors with positive LFA had acceptable titers and were eligible to donate. Out of 171 volunteers, only 65 tested positive in the LFA (38.0%), and 55 (32.2%) had titers of at least 1:1024. Before our donation program started, 31 CP units were procured from the New York Blood Center (NYBC). Among the 31 CP units that were obtained from the NYBC, 25 units (80.6%) were positive in the LFA but only 12 units (38.7%) had titers of at least 1:1024. CP was administered to 28 hospitalized COVID-19 patients. Patients who received low titer CP, high titer CP and patients who did not receive CP were followed for 45 days after presentation. Severe adverse events were not associated with CP transfusion. Death was a less frequent outcome for patients that received high titer CP (>1:1024) 38.6% mortality, than patients that received low titer CP (≤1:1024) 77.8% mortality.


Assuntos
Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Antivirais/imunologia , Doadores de Sangue , Seleção do Doador , Feminino , Humanos , Imunização Passiva/métodos , Imunoglobulina G/sangue , Imunoglobulina G/uso terapêutico , Imunoglobulina M/sangue , Imunoglobulina M/uso terapêutico , Masculino , Pessoa de Meia-Idade , Plasma/imunologia , Estudos Retrospectivos , Soroterapia para COVID-19
4.
Neurochem Res ; 44(5): 1020-1036, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30879174

RESUMO

Seizure activity is governed by changes in normal neuronal physiology that lead to a state of neuronal hyperexcitability and synchrony. There is a growing body of research and evidence suggesting that alterations in the volume fraction (α) of the brain's extracellular space (ECS) have the ability to prolong or even initiate seizures. These ictogenic effects likely occur due to the ECS volume being critically important in determining both the concentration of neuroactive substances contained within it, such as ions and neurotransmitters, and the effect of electric field-mediated interactions between neurons. Changes in the size of the ECS likely both precede a seizure, assisting in its initiation, and occur during a seizure, assisting in its maintenance. Different cellular ion and water transporters and channels are essential mediators in determining neuronal excitability and synchrony and can do so through alterations in ECS volume and/or through non-ECS volume related mechanisms. This review will parse out the relationships between how the ECS volume changes during normal physiology and seizures, how those changes might alter neuronal physiology to promote seizures, and what ion and water transporters and channels are important in linking ECS volume changes and seizures.


Assuntos
Encéfalo/fisiologia , Espaço Extracelular/fisiologia , Convulsões/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Fenômenos Fisiológicos do Sistema Nervoso , Neuroglia/fisiologia
5.
J Vis Exp ; (125)2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28784968

RESUMO

This review describes the basic concepts and protocol to perform the real-time iontophoresis (RTI) method, the gold-standard to explore and quantify the extracellular space (ECS) of the living brain. The ECS surrounds all brain cells and contains both interstitial fluid and extracellular matrix. The transport of many substances required for brain activity, including neurotransmitters, hormones, and nutrients, occurs by diffusion through the ECS. Changes in the volume and geometry of this space occur during normal brain processes, like sleep, and pathological conditions, like ischemia. However, the structure and regulation of brain ECS, particularly in diseased states, remains largely unexplored. The RTI method measures two physical parameters of living brain: volume fraction and tortuosity. Volume fraction is the proportion of tissue volume occupied by ECS. Tortuosity is a measure of the relative hindrance a substance encounters when diffusing through a brain region as compared to a medium with no obstructions. In RTI, an inert molecule is pulsed from a source microelectrode into the brain ECS. As molecules diffuse away from this source, the changing concentration of the ion is measured over time using an ion-selective microelectrode positioned roughly 100 µm away. From the resulting diffusion curve, both volume fraction and tortuosity can be calculated. This technique has been used in brain slices from multiple species (including humans) and in vivo to study acute and chronic changes to ECS. Unlike other methods, RTI can be used to examine both reversible and irreversible changes to the brain ECS in real time.


Assuntos
Encéfalo/fisiologia , Espaço Extracelular , Iontoforese/métodos , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Difusão , Humanos , Microeletrodos , Compostos de Amônio Quaternário
6.
Exp Neurol ; 273: 105-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26257025

RESUMO

Disturbance of calcium homeostasis is implicated in the normal process of aging and brain pathology prevalent in the elderly such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Previous studies demonstrated that applying a hyponatremic iso-osmotic (low-NaCl) artificial cerebrospinal fluid (ACSF) to rodent hippocampus causes extracellular calcium to rapidly decrease. Restoring normonatremia after low-NaCl treatment causes a rapid increase in extracellular calcium that overshoots baseline. This study examined the amplitude, timing, and mechanism of these surprising calcium changes. We also tested whether hyponatremia increased calcium entry into brain cells or calcium binding to chondroitin sulfate (CS), a negatively charged constituent of the extracellular matrix (ECM) that may be occupied by sodium during normonatremia. We report three major findings. First we show that CS does not contribute to extracellular calcium changes during low-NaCl treatments. Second, we show that the time to minimum extracellular calcium during low-NaCl treatment is significantly shorter than the time to maximum extracellular calcium in recovery from low-NaCl treatment. Third, we show that the decrease in extracellular calcium observed during hyponatremia is attenuated by ML 218, a highly selective T-type calcium channel blocker. Together these data suggest that calcium rapidly enters cells at the onset of low-NaCl treatment and is extruded from cells when normonatremia is restored. Calcium binding to CS does not significantly contribute to calcium changes in brain during hyponatremia. Differences in timing suggest that extracellular calcium changes during and in recovery from hyponatremia occur by distinct mechanisms or by a multistep process. Finally, partial block of extracellular calcium influx by ML 218 suggests that T-type channels are involved in calcium entering cells during hyponatremia. Given the high prevalence of hyponatremia among elderly patients and the growing understanding of calcium's role in multiple neurologic pathologies, this study promotes a novel approach for studying and potentially preventing the effects of hyponatremia on calcium dysregulation in brain tissue.


Assuntos
Encéfalo/metabolismo , Canais de Cálcio Tipo T/metabolismo , Cálcio/metabolismo , Hiponatremia/patologia , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Condroitina ABC Liase/farmacologia , Modelos Animais de Doenças , Espaço Extracelular/metabolismo , Técnicas In Vitro , Eletrodos Seletivos de Íons , Camundongos , Camundongos Endogâmicos C57BL , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...